Fundamental Solution of Laplace’s Equation in Hyperspherical Geometry

نویسنده

  • Howard S. COHL
چکیده

Due to the isotropy of d-dimensional hyperspherical space, one expects there to exist a spherically symmetric fundamental solution for its corresponding Laplace–Beltrami operator. The R-radius hypersphere SR with R > 0, represents a Riemannian manifold with positive-constant sectional curvature. We obtain a spherically symmetric fundamental solution of Laplace’s equation on this manifold in terms of its geodesic radius. We give several matching expressions for this fundamental solution including a definite integral over reciprocal powers of the trigonometric sine, finite summation expressions over trigonometric functions, Gauss hypergeometric functions, and in terms of the associated Legendre function of the second kind on the cut (Ferrers function of the second kind) with degree and order given by d/2− 1 and 1− d/2 respectively, with real argument between plus and minus one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element-Based Characterization of Pore-Scale Geometry and Its Impact on Fluid Flow

We present a finite element (FEM) simulation method for pore geometry fluid flow. Within the pore space, we solve the single-phase Reynold’s lubrication equation—a simplified form of the incompressible Navier–Stokes equation yielding the velocity field in a two-step solution approach. (1) Laplace’s equation is solved with homogeneous boundary conditions and a right-hand source term, (2) pore pr...

متن کامل

الکترواستاتیک در فضازمانهای کرمچاله‌ای

  Regarding the static form of Maxwell’s equations in wormhole background geometry, we obtain a generalised form of Laplace’s equation. Because of peculiar geometry of the throat, lines of force that enter the wormhole at one mouth and emerge from the other, initially converge and then diverge. So, for a remote observer the wormhole can act as a charge distribution that modifies the potential, ...

متن کامل

Exact Solution to the Schrödinger Equation for the Quantum Rigid Body

The three-body problem is a fundamental problem in quantum mechanics, which has not been well solved. The Faddeev equations [1] provide a method for solving exactly the quantum three-body problems. However, only a few analytically solvable examples were found [2]. The accurate direct solution of the three-body Schrödinger equation with the separated center-of-mass motion has been sought based o...

متن کامل

Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar

The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...

متن کامل

Modification of A Finite Volume Scheme for Laplace's Equation

For Laplace’s equation, we discuss whether it is possible to construct a linear positive finite volume (FV) scheme on arbitrary unstructured grids. Dealing with the arbitrary grids, we state a control volume which guarantees a positive FV scheme with linear reconstruction of the solution. The control volume is defined by a property of the analytical solution to the equation and does not depend ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011